MR Imaging

Magnetic resonance imaging (MRI) is primarily a noninvasive medical imaging technique used in radiology to visualize detailed internal structure and limited function of the body. It is the preferred imaging technology for evaluating soft tissues and organs and, with respect to oncology, detects primarily soft tissue masses and brain tumors.

MRI uses a strong magnetic field to align the nuclear magnetization of (usually) hydrogen atoms in water in the body. Radio frequency (RF) fields are used to systematically alter the alignment of this magnetization. This causes the hydrogen nuclei to produce a rotating magnetic field detectable by the scanner. MRI provides much greater contrast between the different soft tissues of the body than other techniques (e.g. CT), and is used in oncological, neurological (brain), musculoskeletal and cardiovascular imaging.

MRI and Live Vector Technology

Genelux scientists are developing tumor-colonizing live vector systems to work with MRI technology to achieve improved deep tissue tumor detection. Recent studies have shown that human ferritin (a molecule with iron accumulation properties) can be used as a reporter of gene expression for MRI. To this end, our researchers examined three ferritin–type molecules, including bacterioferritin occurring in bacteria as a reporter of gene expression. After injecting tumor-bearing mice with probiotic E. coli Nissle 1917 bacteria over expressing each of the three molecules, it was determined that bacterioferritin provided the highest contrast in colonized tumors.

This research suggests that, in the future, tumor-colonizing live vector systems (e.g. bacteria) may be used in conjunction with MRI contrast enhancers like ferritin to become an important procedure for diagnosis and therapy of tumors in humans and for monitoring infectious disease models in larger mammals.